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Abstract
It has been frequently observed that the backward differentiation
approximation to the solutions of Ez’ + Fz = f can fail to converge
even pointwise in an initial boundary layer. This note shows that the
approximations converge in a distributional sense even if the exact
solution is also distx:ibutional.

1 Introduction

In a fundamental series of papers 3], [4], [5], Cobb investigated the distri-
butional solutions of the linear time invariant descriptor system

Ed+Fz=f (1)

* Research supported in part by the Air Force Office of Scientific Research under Grant
AFOSR 87-0051 and by the National Science Foundation under Grant DMS-8613093
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and showed that the distributional solutions were the limits, in a distribu-
tional sense, of the solutions of the regularized system (E+¢F)z’+ Fz = f
as ¢ — (. These impulsive solutions were also studied via transfer functions
by Verghese [9]. One of the first class of numerical methods, other then
the reduction of the pencil AE + F, to be applied to (1) were backward
differentiation formulae (BDF) (7], (8]. In [8] it was shown that the BDF
approximations converge to the true solution outside of an initial boundary
layer of nonconvergence.

The simplest of the BDF methods is the implicit Euler’s method with
fixed stepsize h which is

Efﬁi’fj'- + Fziy1 = fin (2)

where t; = to + ihA, f; = f(t:), and z; is the approximation of z(;). In (2] it
is observed that the boundary layer errors look a lot like approximations of
distributions. This note will show that the BDF approximations actually
converge in a distributional sense on the entire interval of definition to the
solution of (1) even if that solution is distributional.

2 Results

We assume that E, F are n x n matrices and that AE + F is a regular
pencil so that det(AE + F') # 0. We also assume that £ is singular, and, in
order to avoid trivial special cases, that the index of (1) is £ > 2. That is,
the order of the pole at infinity is at least two. Equivalently, the solutions
of (1) will involve k — 1 derivatives of the forcing function f. We assume
that f is at least k times continuously differentiable. In order to establish
convergence for general fixed step BDF methods, it suffices to consider (2).
Notation is simplified by taking the initial time ¢, to be zero.
Given a sequence {z,}2, we identify it with the function

[= +]

d & [H(t—ih) - H(t = (i + 1)h))

1=0
where H is the unit step (Heaviside) function. If {z;} is given by (2), then
it gives an O(A) approximation to the true solution z(t) on the interval
(kh T) for fixed T [8]. We are interested in what happens on [0 kA].
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:' By using the Kronecker structure of the pencil, and the well known

8 theory of singular systems [1], {2], it suffices to consider the special case
. N +z=f (3) |
where N is a k£ x k nilpotent Jordan block
2 01 - 0
N N=|
& : .1
‘ 0 0
[
R Then (2) becomes
q (N+hDziyy = Nz + hfin (4)
E‘ We first consider the associated homogeneous equation for (3)
‘-
: Nz'+z=0, z(0)=z (5)
¥ The solution of (5) is
! 2= (-1 80Nz, ©
. v 1=
" where 6() is the itb derivative of the delta function &(t). The backward
’ _ Euler approximation for (5) given by (4) is
. Tip = (N + R 'Nz; = [(1V + hI)-IIV]H'lIo (7N
i
) which is zero for i + 1 > k. Let p=1/h. Then
3 0 p ~F - (=D
, 00 p
3 (N+hD'N = 7
v .
' . . ‘. p
1 oY . . 0
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W andfor 1 <i<k-1,

0 (N+aDNT=| . . y ®)

:l': L 0 0 -

o where the (i 4 j + 1)th superdiagonal of (8), for 0 < j < k—1~1 has entries
_qyeie [ BT

(-1) oy, P

Using (8) and comparing (7) to (6) and equating the coefficients of like
:E s coordinates of zo, we find that we need to show that

D

- : 2 6 (9)
. as h — 0% where |
¥ A= 2= () e -G+ 0w - A -G+ )

=0

N and (9) is taken in the weak distributional secse. That is,

>
k2 fim [ AM0a(var = [T 80@g(t)dt = (1400 (10)

ﬁr for every infinitely differentiable test function g on [0 00). Let w'(t) = g(t)
Ve so that

‘i: /0 A(t)g(t)d hllﬂ Z(— )’( )/((i A g(t)dt

) hil S -1y ( ; ){u-((j+2)h)-w((j+1)h)] (11)

1=0
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.:: Define the operators S,A by Sy, = u; and Au; = u;4; — u so that
'. A =S~ 1. Then (11) becomes

g = 7‘5-;2(-1)1( ‘.)(si“-si*‘)w

B2 '

W ] :

‘J, = h"“ Z\‘I)J ( ) AS™tw

. =

i = L 2( 1) Su

;:: R+l

g

» = hs+1 —A(I - S)'Sw

? - ( 1) s

: = R+t grereals +lS

S . .

N But h="~1A*™*'y converges to w!™*") = ¢() [6] and thus (9) holds.

Now consider the nonhomogeneous problem (3). By linearity the so-
lution of (3) is made up of a smooth solution on [0 T] and (possibly) an
initial impulse satisfying (3) with f = 0. The preceding argument shows
that the approximation for the distributional part converges. It suffices
‘. then to consider the approximation of the smooth solution. Let zor be the
: exact initial value of the smooth solution of (3). Simple examples show
that for the first k steps the error in using (4) can be unbounded as Ak goes

5 to 0 even if 2o = zor. We wish to show that, in fact, the error goes to
N zero weakly in the distributional sense. By iterating (4) backwards, it can
"; be shown that there is an initial condition zos such that taking zo = zox
, leads to a solution of (4) which gives a uniformly O(h) approximation to
y the smooth solution of (3) on [0 T] and also !
‘" Zon = Zor + ho(h) (12) ‘
3| )
:’ where ¢ has a series expansion (k) = £X, ¢:h' + O(R¥"). Now let 2% be )
- the solution of (4) with zo = zos, while .'cm is the solution of the associated
.- homogeneous equation (7) with zo = zor and z:["] is the solution of the
o associated homogeneous equation with zo = ¢,. Then
o4 SR :
y 2 = 2T+ h Y R+ O(n)
1=0
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o But zfo’ is a uniformly O(h) approximation of the unique smooth solution
. of (3). From the argument used to prove (9) we have that the zE" ] converge
to distributions, so that h+!1z"! converges to zero as a distribution as A

f goes to zero. In summary, we have shown:

: 3 Theorem 1 Suppose that AE + F is a regular pencil and zo ts an arbitray

initial condition. Let {z;} be the backward Euler approzimation using (2).
‘ Then this approzimation converges weakly in the distributional sense to the

-'::' distributional solution of E2’' + Fz = f,z(t) = 0.

)

R
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" 3 Comments

o We consider the main result of this paper to be primarily of theoretical

08 interest. However, it is interesting to note that if one has the system (1)

o and is interested in the possible impulsive behavior, then impulsive behavior

e can be modeled by using (2). This simulation is much quicker, and easier

- to program, then a code to compute the pencil decomposition. Also note
. that if the quantities of interest invol¥e weighted integrals of the solution,

-:ﬂ: then these quantities can also be estimated using backward differentiation

Ny formulas.

)

WY

o References

_:' [1] S. L. Campbell, Singular Systems of Differential Equations, Pitman,

W 1980.

¥ [2] S. L. Campbell, Singular Systems of Differential Equations II, Pitman,

oo 1982.

A

' (3] J. D. Cobb, On the solutions of linear differential equations with sin-
¥ gular coefficients, J. Difl. Equations 46 (1982), 310-323.

. :’ [4] J. D. Cobb, A further interpretation of inconsistent initial conditions
‘. in descriptor-varable systems, IEEE Trans. Automatic Control, AC-

w 28 (1983) 920-922.

¥
!

n 6

e n - . A A A AN R A A A A R T T Ak S R i W B Y e P R, T Wy
—a WIS I TN Nadad ! I, ..0. a2 L L N Ly 2 ”n



- e - -

-

e 4 - -~

. Rl 0 » v 0a* 02" 92 a1 a1 ath 20 2" 'a%h 60 %A 5™
n‘!“.‘.““"i"“l'-l‘ A N UK N O R bat b \/ o 0% b A U

[5] J. D. Cobb, Fundamental properties of the manifold of singular and
regular linear systems, J. Math. Anal. Appl. 120 (1986) 328-353.

[6] G. Dahlquist, A. Bjorck, Numerical Methods, (Translated by N. An-
derson) Prentice-Hall, 1974.

(7] C. W. Gear, Simultaneous numerical solution of differential-algebraic
equations, IEEE Trans. Circuit Theory, CT-18 (1971), 89-95.

(8] R. F. Sincovec, A. M. Erisman, E. L. Yip, and M. A. Epton, Anal-
ysis of descriptor systems using numerical algorithms, IEEE Trans.
Automatic Control, AC-26 (1981), 139-147.

[9] G. C. Verghese, B. C. Levy, and T. Kailath, A generalized state-space

for singular systems, IEEE Trans. Automatic Control, AC-26 (1981),
811-831. . ’

'




M ]

"

“¢8,

Iy

oy

29,

»

g0 ta g et

!

W\

k%

AN A A

Wity

el

N

L}
L

Lot

' L}
AT

L Y
.-’l?v‘i!

et

-

e e .




